
Efficient Parallelized Network Coding
for P2P File Sharing Applications

Karam Park1, Joon-Sang Park2, Won W. Ro1

1 School of Electrical and Electronic Engineering

Yonsei University, Seoul, Korea
{riopark, wro}@yonsei.ac.kr

2 Department of Computer Engineering

Hongik University, Seoul, Korea
jsp@hongik.ac.kr

Abstract. In this paper, we investigate parallel implementation techniques for
network coding to enhance the performance of Peer-to-Peer (P2P) file sharing
applications. It is known that network coding mitigates peer/piece selection
problems in P2P file sharing systems; however, due to the decoding complexity
of network coding, there have been concerns about adoption of network coding
in P2P file sharing systems and to improve the decoding speed the exploitation
of parallelism has been proposed previously. In this paper, we argue that
naive parallelization strategies of network coding may result in unbalanced
workload distribution and thus limiting performance improvements. We further
argue that higher performance enhancement can be achieved through load
balancing in parallelized network coding and propose new parallelization
techniques for network coding. Our experiments show that, on a quad-core
processor system, proposed algorithms exhibit up to 30% of speed-up compared
to an existing approach using 1 Mbytes data with 2048×2048 coefficient matrix
size.

Keywords: Network coding, parallelization, random linear coding.

1 Introduction

Multi-core systems nowadays are prevalent; they are found in a wide spectrum of
systems, from high performance servers to special purpose embedded systems.
Recently, the trend has been embedding more and more cores in a processor rather
than increasing clock frequency rate to boost processors’ performance [1]. In this
paper, we propose new implementation techniques that can enhance the performance
of network coding [2] by fully exploiting parallelism on the multi-core systems.

Network coding which is generally due to Ahlswede et al. [2] is a method that can
be used to enhance network throughput and reliability. In addition, it has been shown
that network coding benefits peer-to-peer (P2P) file sharing [3], especially so-called
file swarming type systems. In file swarming systems, a file is divided into multiple
pieces and pieces are exchanged among peers. To download a file, a peer must collect
all the pieces comprising the file. If a peer downloads multiple pieces simultaneously

from peers, it dramatically reduces downloading delay, which is the main advantage
of using the file swarming technique. However, the selection of peers and pieces to
download has a big impact on the overall performance, which is generally referred to
as the piece selection problem. The use of network coding mitigates this problem in
P2P file swarming systems [3]. In network coded systems, the data are “encoded” into
packets such that the packets are equally important, i.e., no difference exists among
the packets being exchanged, and thus a peer is only suppose to collect a specific
number of equally important packets

One pitfall of network coding is computational overhead. Original data are coded
before exchanging and downloaded packets are to be decoded to recover the original
information. The decoding process is implemented usually as a variation of Gaussian
elimination which has O(n3) computational complexity. This complexity is quite pricy
in fact especially when the size of the file is huge. It is probable that the time spent for
decoding may actually cancel out all the benefit of reduced transmission time. Thus, it
is critical for network coded P2P systems to have a fast enough decoder. To provide
fast decoding speed, Shojania et al. has suggested Parallelized Progressive Network
Coding (PPNC) [4]. However, due to its unbalanced workload on each parallel task
(or thread), their algorithms cannot take full advantage of parallelism.

In this paper, we propose parallel implementations of network coding that in nature
balance workload among parallel tasks. Via real machine experiments, we show that
our new techniques allow meaningful reduction of execution time compared to PPNC.
On a quad core system for example, we achieve speed-up of 3.25 compared with a
serial implementation and 30% of performance improvement over PPNC algorithm
with 1Mbytes data and the coefficient matrix size of 2048×2048.

2 Background

In this section, we present an introduction of network coding and related work.

2.1 Principles of Network Coding

Fig. 1. A Communication Networks for Network Coding

Fig. 1 depicts a directed graph representing a simple communication network; the
edges represent pathways for information transfer and the node S is the source, and

the node D and E represent receivers. The other remaining nodes represent
intermediate points in the routing paths.

In this example, network coding enables us to multicast two bits per unit time
assuming that each link conveys a bit per unit time, which cannot be achieved without
network coding, i.e., through traditional routing. Suppose we generate data bits a and
b at source S and want to send the data to both D and E. We send data a through path
SAC, SAD, and data b through SBC, SBE. With the routing, we can only send either a
or b but not both, from C to Z. Suppose we send data a to Z. Then D would receive a
twice from A and Z, and would not get b. Sending b instead would also raise the same
problem for E. Therefore, routing is insufficient as it cannot send both data a and b to
both D and E simultaneously. Using network coding, on the other hand, we could
encode the data a and b received in C and send the encoded version to CZ. Say we use
bitwise xor for encoding. Then, a and b are encoded to ‘a xor b’. The encoded data is
sent along on the path CZD and CZE. Node D receives data a and ‘a xor b’, so it can
decode b from them. It is the same for node E, where it receives data b and ‘a xor b’.

However, to assume the increased throughput that network coding allows, the
encoding/decoding process must not be the bottleneck. The encoding/decoding
process depends on the coding solution to be used and there are several ways to find
out an optimal coding solution given a network. In this paper we restrict ourselves to
the random linear coding [6][7], since it is the most widely used coding solution
which is asymptotically optimal in any network. Now we explain how encoding and
decoding works in random linear coding.

(a) (b)

Fig. 2. Encoding Concept and Received Data Structure

Let us assume that an application transfers a file. Then the file is divided into a
specific number of blocks as shown in Fig. 2-(a) where ܘ ௞ denotes kth block. A
coded packet ܋ ௜ is a linear combination of the blocks constituting the file. That
is ܋௜ ൌ ∑ ௞ܘ௞܍

௡
௞ୀଵ , where n is the number of blocks and the coefficient ܍௞ is a

certain element randomly chosen in a certain finite field F. Every arithmetic operation
is over the field F. The coded packet ܋ ௜ is broadcasted to other destination nodes
along with the coefficient vector, [܍ଵ, …, ܍௡], stored in the header. This “transfer
unit” is shown in Fig. 2-(a).

On reception of coded packets, nodes in the path to the destinations re-encode the
coded packets and send them to downstream nodes. When a coded packet reaches a
destination node it has to be stored in the local memory. For the destination node to
decode the packets and recover the original file, it needs to get n transfer units with
independent coefficient vectors. Let say a receiver has collected n transfer units and
let ۳୘ ൌ ሾ ܍ଵ

୘ ௡܍ …
୘ ሿ, ۱୘ ൌ ሾ ܋ଵ

୘ ௡܋ …
୘ ሿ and ୘۾ ൌ ሾ ܘଵ

୘ ௡ܘ …
୘ ሿ where

superscript T stands for the transpose operation. As the coded packet was calculated
as ۱ ൌ ۾ we can recover the original file P from C by ,۾۳ ൌ ۳ି૚۱. Note that E
needs to be invertible, so all coefficient vectors ܍௞’s must be independent with each
other. Usually a variant of Gaussian elimination is used to recover ۾. When transfer
units arrive to a destination, it organizes coefficient and packet matrixes as Fig. 2-(b)
as a preparation for running Gaussian elimination. A typical Gaussian elimination or
LU decomposition restricts us to wait until we collect n transfer units and have the
n×n coefficient matrix before start running the process. However, with progressive
decoding [6], we have no need to wait until all transfer units received. Rather
decoding is done progressively as each transfer unit is arrived.

Since the decoding takes O((n + m) × n2) time where m is the block size, m and n
are important parameters and given the file size l, n and m are inverse proportional to
each other since l = n * m. In the file swarming scenarios, the bigger n enables the
greater downloading delay reduction, since a peer can receive at most n simultaneous
block transfers reducing the downloading delay by n. But since the decoding delay
which might cancel out the downloading delay benefit increases proportional to n3,
fast decoding implementation is a key to get the benefit comes with a large n. In other
words, given a fast decoding algorithm, a larger n allows a bigger performance gain.

2.2 Related Works

Ahlswede et al. first introduced the network coding and showed the usefulness of
network coding [2]. Koetter and Medard proved later that in a network, the maximum
throughput can be achieved with linear network codes [5]. With these backgrounds,
Chou et al. in [6] and Ho et al. in [7] suggested random linear network coding, which
is our target and is conceived to be the most practical scheme for single multicast flow
cases. Lun et al. showed the utility of network coding on wireless network systems in
[8], until then, researches of network coding were focused on wired networks. Katti et
al. proposed practical solutions for wireless networks with multiple unicast flows in
[9] and Park et al. suggested a practical protocol based on network coding for ad hoc
multicasting networks and showed improvements of reliability of ad hoc network
systems by network coding in [10]. In addition, using network coding in P2P was first
proposed in [11] and recent feasibility studies on network coding in real testbeds have
been done in [12] and Lee et al. showed the utility of network coding in mobile P2P
systems [13]. Gkantsidis et al. also showed that network coding allows smooth, fast
downloads and efficient server utilization on a P2P setting [3].

Shojania et al. suggested parallelization of network coding in [4]. They employed
hardware acceleration into the network coding and used a multi-threaded design to
take advantages of multi-core systems. There are some other performance
enhancement techniques (e.g. [14], [15]). Their work is different from our work in

that their focus is reducing the computational complexity of encoding/decoding
operation and ours focuses on improving decoding performance via parallelization.

There are many researches such as parallelization of matrix inversion [16], parallel
LU decomposition [17], and parallelization of Gauss-Jordan elimination with block-
based algorithms [18]. In fact, those existing parallel algorithms could be used to
decode received packets of network coding. However, these algorithms need to
receive the entire matrix before starting decoding operations.

In network coded systems, waiting for the entire matrix to be formed is not an
optimal solution. In P2P settings, transfer units are delivered one by one and the time
gap between the arrivals of transfer units can be large. Thus, instead of waiting all the
packets to arrive, partial decoding is performed on reception of each transfer unit
hence the name of “progressive” decoding [4]. Our focus is on this type of
progressive decoding.

To enhance the performance of the progressive decoding, Parallelized Progressive
Network Coding (PPNC) is proposed [4]. It is basically a variant of the Gauss-Jordan
elimination algorithm. A simple description of Gauss-Jordan elimination borrowed
from [4] is presented in Table 1.

Table 1. Operation of Each Stage in Progressive Decoding [4]

Stages Task Descriptions

A Using the former coefficients rows, reduce the leading coefficients in the new
coefficient row to 0.

B Find the first non-zero coefficient in the new coefficient row
C Check for linear independence with existing coefficient rows
D Reduce the leading non-zero entry of the new row to 1, such that result in REF
E Reduce the coefficient matrix to the reduced row-echelon form

To enable progressive decoding, the stages of PPNC start operating when the

destination receives a transfer unit containing coded packet and coefficient, that
means a new row is added to matrix. On each transfer unit’s arriving, the operations
from Stage A to Stage E operate on the coefficient and packet matrixes to form the
reduced row-echelon form. In these stages, Stage A and E are dominant procedures.
According to [4], Stage A has 50.05%, and Stage E has 49.5% of decoding workload.
So the parallelization is focused on Stage A and E.

Fig. 3. Concept of Thread Dividing in PPNC

The main concept of the parallelization is to divide the coefficient matrix and
packet matrix into a limited number of operational regions each of which is fed to
parallel tasks (or threads). The regions are divided by vertically and equally as Fig. 3
with PPNC. Since dependency between threads exists, at start and end of each stage,
synchronization between threads is needed.

3 Algorithms for Parallelization of Network Coding

In this section, we present an arithmetic analysis on the workload balancing problem
of the parallel progressive decoding algorithm and propose three new parallelization
methods. In this paper, we focus on the parallelization of E stage for the purpose of
clearer presentation. Unless otherwise specified, other stages such as Stage A are
parallelized with the same techniques used in [4].

3.1 Arithmetic Analysis of Thread Balancing

The best way to divide overall workload in parallel algorithms is to allocate same
amount of load to each parallel task so that all the tasks such that they can start and
end simultaneously. If the workload is unbalanced, the benefit of parallelism
diminishes, which limits the performance of PPNC proposed in [4].

To illustrate the problem, let us assume that the size of coefficient matrix is n×n.
The Stage E operations start with all threads, but later, when index of decoding go to
row of ௡

௡௨௠௕௘௥ ௢௙ ௧௛௥௘௔ௗ௦
 , the first thread has no work during coefficient matrix

operation on Stage E. The region for that thread is already filled with 0 and 1, and no
additional operation is needed. If there are two threads, the first thread has no
operation after ௡

ଶ
 row’s operation. In case of 4 threads, first thread has no operation

after ௡
ସ
 row’s operation. The more threads are added, the more inefficiency occurs.

To compute the workload of each thread, we define a sequence of a subtraction
after a multiplication on a spot of matrix which operates in Stage E, to a unit
operation. With arithmetical approach, in case of 2 threads, the first thread operates
௡యା ଺௡మା଼௡

ସ଼
 unit operations and the second thread operates ௡యା ଺௡మା଼௡

ସ଼
൅ ௡యାଶ௡మ

଼

operations. The gap between two threads’ numbers of operations is ௡యାଶ௡మ

଼
, and it is

bigger than first thread’s whole operation numbers. In case of 4 threads, the gap
between the threads is getting larger. The first thread operates ଷ௡యା଺௡మାଵ଺௡

ଵଽଶ
 unit

operations, and the last thread operates ଷ௡యା଺௡మାଵ଺௡
ଵଽଶ

൅ ଷ௡యା଺௡మ

ଷଶ
 unit operations. The gap

between the first and the last thread’s operation numbers is ଷ௡యା଺௡మ

ଷଶ
 in this case.

From the analysis above, we can easily see that the workload imbalance gap of
PPNC is proportional to n3. That is, using PPNC threads may have to wait for other
treads possibly for a long time. We solve this workload imbalance problem and
suggest more efficient parallel decoding algorithms in the next section.

3.2 DOA: Dynamic Operation Assignment for Balanced Workload

We suggest three different methods for efficient parallelization of the network coding.
The first two methods are based on the horizontal division of matrix in order to
balance the task separation. The easiest way of horizontal dividing is round robin (RR)
method, which means a row is assigned to a thread, and the next row is assigned to
the next thread, and continues as Fig. 4-(a). However, when two threads are assigned
to any odd numbers of rows, the last row is always assigned to the first thread
unevenly. Therefore, the first thread has the heavier workload, and unbalanced work
distribution is made. More efficient horizontal dividing is backward round robin
(BRR) after round robin as Fig. 4-(b). In this way, the thread of heaviest workload is
changing, but also in case of operations on rows with odd numbers, perfect load
balancing is not possible. Moreover, this method needs more complex arithmetic
operations to find the row to operate than round robin and need more time for that. So
we expect there exist some trade-offs; we will discuss this matters with the
experimental results of two algorithms on real machines in Section 4.

(a) RR - Round Robin Method (b) BRR – Backward Round Robin Method

Fig. 4. Concept of Horizontal Separation for Balanced Task Partitioning

In case of round robin, the first thread, which has the maximum workload, would
take ૛࢔૜ାૢ࢔૛ା૚૙࢔

૛૝
 unit operations on 2 threads, and ૛࢔૜ା૚ૠ࢔૛ା૜૙࢔

૝ૡ
 on 4 threads. On the

other hand, last thread which has the minimum load would take ૛࢔૜ା૜࢔૛ି૛࢔
૛૝

 on 2

threads and ૛࢔૜ି࢔૛
૝ૡ

 operations on 4 threads. The gaps between threads are ࢔૛ା૛࢔
૝

 with

2 threads and ૜࢔૛ା૞࢔
ૡ

 with 4 threads. Compared to the gap calculated with PPNC, we
can find out that round robin is much more efficient.

The third method is to use dynamic vertical separation of operation area which is
named DOA (Dynamic Operation Assignment). In this method, the dividing point is
dynamically varied for each row operations as illustrated in Fig. 5. When the first row
is to be handled as shown in the left most diagram, each thread is assigned ௡ିଵ

ଶ

columns, and when working on the second row and the third row shown in the next
two diagrams, each thread works on area of ௡ିଶ

ଶ
 and ௡ିଷ

ଶ
 columns, respectively. If

the number of columns to be assigned is not the multiples of the number of threads,
the remaining columns are assigned unevenly.

Fig. 5. Concept of Dynamic Thread Separation on Operation Area

As the algorithms progress, the region assigned to each thread is getting narrower
and deeper. In this way, we can easily achieve fair balancing of workloads among
threads. Imbalanced distribution happens when the number of remaining columns is
not a multiple of k (where k denotes the number of threads). However, that kind of
imbalance is negligible especially when k is smaller compared to n and the DOA is an
efficient algorithm for parallelization of Stage E.

4 Experimental Results and Performance Analysis

Table 2. Experimental Environment

 Dual-Core Quad-Core
CPU Intel Core 2 Duo E6750 AMD Phenom-X4 9550
CPU Clock 2.66GHz 2.2GHz
RAM 2GByte 4GByte

Cache
Configuration

2x32KByte L1 cache
4MByte Shared L2 cache

4 x 128KByte L1 cache
4 x 512KByte L2 cache
2MByte Shared L3Cache

Operating Systems Fedora Linux Core 8 Fedora Linux Core 8

In this section, we evaluate the proposed three algorithms via extensive experiments
on real multi-core machines. The specification of the machines we have used for our
experiments is described in Table 2.

4.1 Performance Evaluation Considering Stage E Only

The first set of experiments is carried on in order to see the performance of Gauss-
Jordan elimination only with the coefficient matrix; which means we exclude the
execution time spent on the packet matrix.

(a) (b)

Fig. 6. Execution Time on Stage E and Speed-up (Coefficient Matrix Operation Only)

Fig. 6-(a) shows the execution time spent only on Stage E of the coefficient matrix
operation for four different algorithms: PPNC, RR, BRR, and DOA. Fig. 6-(b) presents
the speed-up of RR, BRR, and DOA compared to PPNC. The size of the file used is
1MB. From the figures, we notice that DOA shows the best performance. The speed-
up factor ranges from 2 to 2.4 compared to PPNC (again, when considering only
Stage E of the coefficient matrix operation). We also notice that the execution time of
round robin (RR) and backward round robin (BRR) are very similar. This is due to the
fact that the advantages/disadvantages of two different thread assignment methods
diminish in the real implementation.

4.2 Speed-Up Comparison on Dual-Core Systems

(a) (b)

Fig. 7. Decoding Process Speed-up with Varying the Data Size

In this part, the speed-up factor of total decoding time considering a whole file is
measured. We have calculated the speed-up factors compared to sequential algorithms
for various experimental scenarios. In Fig. 7, we can find out the speed-up factors of
decoding process with four proposed algorithms on a dual-core processor. Fig. 7-(a)
and (b) show speed-ups with n = 1024 and n = 2048 on a dual-core processor. On the

dual-core processor, RR, BRR, and DOA do not show sharp improvement on speed-up
while showing a better performance compared to PPNC. These results prove that our
proposed algorithms are more efficient than PPNC.

4.3 Total Decoding Time Comparison

In this part, the total execution time on process is measured. In Fig. 8, we can find out
the decoding time of the various file sizes. Fig. 8 presents the execution time in case
with n = 1024 at (a), and n = 2048 at (b). Due to the PPNC’s unbalanced parallel
workload distribution, the PPNC approach results in the longest decoding time
compared to the other three algorithms in the whole decoding process. In fact, the
operations in the remaining stages but Stage E in our algorithms are very similar to
those operations in PPNC. In other words, the speed up in Stage E is a dominant
factor.

(a) On Quad-Core, n = 1024 (b) On Quad-Core, n = 2048

Fig. 8. Decoding Execution Time (in sec) with Different Data Sizes on Quad-core

Ratio of execution time on coefficient matrix increases with larger coefficient
matrix size, therefore DOA, RR, and BRR show better performance results on whole
decoding process with large n. It is very important finding since the performance
improvement in large sizes is crucial for file swarming as mentioned in Section 2.1.
As indicated in [4], the task of coding more than 128 blocks is challenging and should
be addressed. We claim that our approach can provide a better solution for the
network coding with large numbers of blocks.

4.4 Scalability Comparison

We measure the speed-up factors and scalability using various numbers of cores to
verify the efficiency of each algorithm. The scalability means the capability to
accelerate the operation speed with the addition of cores. In this section, the results on
scalability are derived with the speed-up divided by the number of cores. All the
results are calculated considering the execution time of a sequential program on a
single core. Fig. 9-(a) shows the speed-up factors of each algorithm with using

various numbers of cores. We can find out the DOA shows the best performance over
other three algorithms. Fig. 9-(b) shows the scalability calculated from the results
shown on Fig. 9-(a). It is also demonstrated that the DOA algorithms show the best
scalability and these results prove the efficiency of DOA in multi-core environments.

(a) Speed-Up Factors (b) Scalability

Fig. 9. Speed-up Factors and Scalability of Each Algorithm (2MB Data, n=1024)

5 Conclusion and Future Work

This paper introduced efficient parallel algorithms for the random network coding.
To be more specific, we proposed “balanced” parallel algorithms. We showed via
analysis that our algorithms have less workload difference between tasks compared to
the previously proposed PPNC algorithm. Via real machine experiments, we showed
that our algorithms achieved speed-up of 3.05 compared to a sequential
implementation and showed 14~30% improvement over PPNC. Moreover, our
algorithms showed better scalability than PPNC on the number of processing units
(e.g., processor cores). We expect that our work can be applied to further enhance the
performance of various network coding applications such as peer-to-peer file sharing
systems.

Acknowledgement

This work was supported by the Korea Research Foundation Grant funded by the
Korean Government (KRF-2008-313-D00871).

References

1. Geer, D.: Industry trends: Chip makers turn to multi-core processors. Computer, vol.
38, no. 5, pp. 11--13 (2005)

2. Ahlswede, R., Cai, N., Li, S.-Y.R., and Yeung R.W.: Network information flow. IEE
E Trans. Inform. Theory, vol. 46, no. 4, pp. 1204--1216 (2000)

3. Gkantsidis, C., Rodriguez, P.: Comprehensive View of a Live Network Coding P2P
System. In: IMC’06, Rio de Janeiro (2006)

4. Shojania, H., Baochun Li: Parallelized Progressive Network Coding With Hardware
Acceleration. In: 15th IEEE International Workshop on Quality of Service, pp.47--55, (2007)

5. Koetter, R., M´edard, M.: An algebraic approach to network coding. IEEE/ACM Trans.
Networking, vol.11, no.5, pp. 782--795 (2003)

6. Chou, P., Wu, Y., Jain, K: Practical Network Coding. In: 51st Allerton Conf. Comm
un.,Control and Computing (2004)

7. Ho, T., M´edard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.: A R
andom Linear Network Coding Approach to Multicast. IEEE Trans. Information Theo
ry, vol.52, no.10, pp.4413--4430,

8. Lun, D.S., Ratnakar, N., M´edard, M., Koetter, R., Karger, D.R., Ho, T., Ahmed,
E., Zhao, F.: Minimum-cost multicast over coded packet networks. IEEE Trans. Infor
m. Theory, vol. 52, no. 6, pp. 2608--2623 (2006)

9. Katti, S., Rahul, H., Hu, W., Katabi, D., M´edard, M., Crowcroft, J.: XORs in the Ai
r - Practical Wireless Network Coding.
IEEE/ACM Transactions on Networking. vol. 16, no. 3, pp. 497--510 (2008)

10. Park, J.-S., Gerla, M., Lun, D.S., Yi, Y., M´edard, M.: Codecast: a network coding bas
ed ad hoc multicast protocol. IEEE Wireless Communications, vol.13, no.5, pp.76--81
 (2006)

11. Gkantsidis, C., Rodriguez, P.R.: Network coding for large scale content distribution.
In: 24th Annual Joint Conference of the IEEE Computer and Communications Societies.
vol.4, pp. 2235--2245 (2005)

12. Wang, M., Li, B.: Lava: A Reality Check of Network Coding in Peer-to-Peer Live
Streaming. In: INFOCOM 2007. 26th IEEE International Conference on Computer Co
mmunications. IEEE, pp.1082--1090 (2007)

13. Lee, U., Park J.-S., Yeh, J., Pau, G., Gerla, M.: CodeTorrent: Content Distribution u
sing Network Coding in VANETs. In: 1st international Workshop on Decentralized R
esource Sharing in Mobile Computing and Networking. MobiShare '06. ACM (2006)

14. Ma, G., Xu, Y., Lin, M., Xuan, Y.: A content distribution system based on sparse li
near network coding. In: NetCod07, 3rd Workshop on Network Coding, Miami (2007)

15. Maymounkov, P., Harvey, N.J.A., Lun, D.S.: Methods for efficient network coding.
Allerton, Monticello (2006)

16. Csánky, L.: Fast Parallel Matrix Inversion Algorithms. SIAM J. Computing, vol.
5, pp. 618--623 (1976)

17. Bisseling, R.H., Van de Vorst, J.G.G.: Parallel LU decomposition on a transputer network,
LNCS, vol. 384, pp. 61--77 Springer Berlin, Heidelberg (1989)

18. Melab, N., Talbi, E.-G., Petiton, S., A Parallel Adaptive Gauss-Jordan Algorithm, Th
e journal of supercomputing, vol. 17, no. 2, pp. 167--185 (2000)

