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Abstract. In this paper, we investigate parallel implementation techniques for 
network coding to enhance the performance of Peer-to-Peer (P2P) file sharing 
applications.  It is known that network coding mitigates peer/piece selection 
problems in P2P file sharing systems; however, due to the decoding complexity 
of network coding, there have been concerns about adoption of network coding 
in P2P file sharing systems and to improve the decoding speed the exploitation 
of parallelism has been proposed previously.  In this paper, we argue that 
naive parallelization strategies of network coding may result in unbalanced 
workload distribution and thus limiting performance improvements. We further 
argue that higher performance enhancement can be achieved through load 
balancing in parallelized network coding and propose new parallelization 
techniques for network coding.  Our experiments show that, on a quad-core 
processor system, proposed algorithms exhibit up to 30% of speed-up compared 
to an existing approach using 1 Mbytes data with 2048×2048 coefficient matrix 
size. 
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1   Introduction 

Multi-core systems nowadays are prevalent; they are found in a wide spectrum of 
systems, from high performance servers to special purpose embedded systems. 
Recently, the trend has been embedding more and more cores in a processor rather 
than increasing clock frequency rate to boost processors’ performance [1]. In this 
paper, we propose new implementation techniques that can enhance the performance 
of network coding [2] by fully exploiting parallelism on the multi-core systems. 

Network coding which is generally due to Ahlswede et al. [2] is a method that can 
be used to enhance network throughput and reliability. In addition, it has been shown 
that network coding benefits peer-to-peer (P2P) file sharing [3], especially so-called 
file swarming type systems. In file swarming systems, a file is divided into multiple 
pieces and pieces are exchanged among peers. To download a file, a peer must collect 
all the pieces comprising the file. If a peer downloads multiple pieces simultaneously 



from peers, it dramatically reduces downloading delay, which is the main advantage 
of using the file swarming technique. However, the selection of peers and pieces to 
download has a big impact on the overall performance, which is generally referred to 
as the piece selection problem. The use of network coding mitigates this problem in 
P2P file swarming systems [3]. In network coded systems, the data are “encoded” into 
packets such that the packets are equally important, i.e., no difference exists among 
the packets being exchanged, and thus a peer is only suppose to collect a specific 
number of equally important packets 

One pitfall of network coding is computational overhead. Original data are coded 
before exchanging and downloaded packets are to be decoded to recover the original 
information. The decoding process is implemented usually as a variation of Gaussian 
elimination which has O(n3) computational complexity. This complexity is quite pricy 
in fact especially when the size of the file is huge. It is probable that the time spent for 
decoding may actually cancel out all the benefit of reduced transmission time. Thus, it 
is critical for network coded P2P systems to have a fast enough decoder. To provide 
fast decoding speed, Shojania et al. has suggested Parallelized Progressive Network 
Coding (PPNC) [4]. However, due to its unbalanced workload on each parallel task 
(or thread), their algorithms cannot take full advantage of parallelism.  

In this paper, we propose parallel implementations of network coding that in nature 
balance workload among parallel tasks. Via real machine experiments, we show that 
our new techniques allow meaningful reduction of execution time compared to PPNC. 
On a quad core system for example, we achieve speed-up of 3.25 compared with a 
serial implementation and 30% of performance improvement over PPNC algorithm 
with 1Mbytes data and the coefficient matrix size of 2048×2048. 

2   Background 

In this section, we present an introduction of network coding and related work.   

2.1   Principles of Network Coding 

 

Fig. 1. A Communication Networks for Network Coding 

Fig. 1 depicts a directed graph representing a simple communication network; the 
edges represent pathways for information transfer and the node S is the source, and 



the node D and E represent receivers. The other remaining nodes represent 
intermediate points in the routing paths. 

In this example, network coding enables us to multicast two bits per unit time 
assuming that each link conveys a bit per unit time, which cannot be achieved without 
network coding, i.e., through traditional routing. Suppose we generate data bits a and 
b at source S and want to send the data to both D and E. We send data a through path 
SAC, SAD, and data b through SBC, SBE. With the routing, we can only send either a 
or b but not both, from C to Z. Suppose we send data a to Z. Then D would receive a 
twice from A and Z, and would not get b. Sending b instead would also raise the same 
problem for E. Therefore, routing is insufficient as it cannot send both data a and b to 
both D and E simultaneously. Using network coding, on the other hand, we could 
encode the data a and b received in C and send the encoded version to CZ. Say we use 
bitwise xor for encoding. Then, a and b are encoded to ‘a xor b’. The encoded data is 
sent along on the path CZD and CZE. Node D receives data a and ‘a xor b’, so it can 
decode b from them. It is the same for node E, where it receives data b and ‘a xor b’.  

However, to assume the increased throughput that network coding allows, the 
encoding/decoding process must not be the bottleneck. The encoding/decoding 
process depends on the coding solution to be used and there are several ways to find 
out an optimal coding solution given a network. In this paper we restrict ourselves to 
the random linear coding [6][7], since it is the most widely used coding solution 
which is asymptotically optimal in any network. Now we explain how encoding and 
decoding works in random linear coding.  

 

(a)                             (b) 

Fig. 2. Encoding Concept and Received Data Structure 

Let us assume that an application transfers a file. Then the file is divided into a 
specific number of blocks as shown in Fig. 2-(a) where ܘ ௞ denotes kth block. A 
coded packet ܋ ௜ is a linear combination of the blocks constituting the file. That 
is ܋௜ ൌ  ∑ ௞ܘ௞܍

௡
௞ୀଵ , where n is the number of blocks and the coefficient ܍௞ is a 

certain element randomly chosen in a certain finite field F. Every arithmetic operation 
is over the field F. The coded packet ܋ ௜ is broadcasted to other destination nodes 
along with the coefficient vector, [܍ଵ, …, ܍௡], stored in the header. This “transfer 
unit” is shown in Fig. 2-(a).  



On reception of coded packets, nodes in the path to the destinations re-encode the 
coded packets and send them to downstream nodes. When a coded packet reaches a 
destination node it has to be stored in the local memory. For the destination node to 
decode the packets and recover the original file, it needs to get n transfer units with 
independent coefficient vectors. Let say a receiver has collected n transfer units and 
let ۳୘ ൌ  ሾ ܍ଵ

୘ ௡܍ … 
୘ ሿ,   ۱୘ ൌ   ሾ ܋ଵ

୘ ௡܋ … 
୘ ሿ and ୘۾   ൌ  ሾ ܘଵ

୘ ௡ܘ  … 
୘ ሿ  where 

superscript T stands for the transpose operation. As the coded packet was calculated 
as ۱ ൌ ۾ we can recover the original file P from C by ,۾۳ ൌ ۳ି૚۱. Note that E 
needs to be invertible, so all coefficient vectors ܍௞’s must be independent with each 
other. Usually a variant of Gaussian elimination is used to recover ۾. When transfer 
units arrive to a destination, it organizes coefficient and packet matrixes as Fig. 2-(b) 
as a preparation for running Gaussian elimination. A typical Gaussian elimination or 
LU decomposition restricts us to wait until we collect n transfer units and have the 
n×n coefficient matrix before start running the process. However, with progressive 
decoding [6], we have no need to wait until all transfer units received. Rather 
decoding is done progressively as each transfer unit is arrived.  

Since the decoding takes O( (n + m) × n2) time where m is the block size, m and n 
are important parameters and given the file size l, n and m are inverse proportional to 
each other since l = n * m. In the file swarming scenarios, the bigger n enables the 
greater downloading delay reduction, since a peer can receive at most n simultaneous 
block transfers reducing the downloading delay by n. But since the decoding delay 
which might cancel out the downloading delay benefit increases proportional to n3, 
fast decoding implementation is a key to get the benefit comes with a large n. In other 
words, given a fast decoding algorithm, a larger n allows a bigger performance gain. 

2.2   Related Works 

Ahlswede et al. first introduced the network coding and showed the usefulness of 
network coding [2]. Koetter and Medard proved later that in a network, the maximum 
throughput can be achieved with linear network codes [5]. With these backgrounds, 
Chou et al. in [6] and Ho et al. in [7] suggested random linear network coding, which 
is our target and is conceived to be the most practical scheme for single multicast flow 
cases. Lun et al. showed the utility of network coding on wireless network systems in 
[8], until then, researches of network coding were focused on wired networks. Katti et 
al. proposed practical solutions for wireless networks with multiple unicast flows in 
[9] and Park et al. suggested a practical protocol based on network coding for ad hoc 
multicasting networks and showed improvements of reliability of ad hoc network 
systems by network coding in [10]. In addition, using network coding in P2P was first 
proposed in [11] and recent feasibility studies on network coding in real testbeds have 
been done in [12] and Lee et al. showed the utility of network coding in mobile P2P 
systems [13]. Gkantsidis et al. also showed that network coding allows smooth, fast 
downloads and efficient server utilization on a P2P setting [3]. 

Shojania et al. suggested parallelization of network coding in [4]. They employed 
hardware acceleration into the network coding and used a multi-threaded design to 
take advantages of multi-core systems. There are some other performance 
enhancement techniques (e.g. [14], [15]). Their work is different from our work in 



that their focus is reducing the computational complexity of encoding/decoding 
operation and ours focuses on improving decoding performance via parallelization. 

There are many researches such as parallelization of matrix inversion [16], parallel 
LU decomposition [17], and parallelization of Gauss-Jordan elimination with block-
based algorithms [18]. In fact, those existing parallel algorithms could be used to 
decode received packets of network coding. However, these algorithms need to 
receive the entire matrix before starting decoding operations.  

In network coded systems, waiting for the entire matrix to be formed is not an 
optimal solution. In P2P settings, transfer units are delivered one by one and the time 
gap between the arrivals of transfer units can be large. Thus, instead of waiting all the 
packets to arrive, partial decoding is performed on reception of each transfer unit 
hence the name of “progressive” decoding [4]. Our focus is on this type of 
progressive decoding.  

To enhance the performance of the progressive decoding, Parallelized Progressive 
Network Coding (PPNC) is proposed [4]. It is basically a variant of the Gauss-Jordan 
elimination algorithm. A simple description of Gauss-Jordan elimination borrowed 
from [4] is presented in Table 1. 

Table 1. Operation of Each Stage in Progressive Decoding [4] 

Stages Task Descriptions 

A Using the former coefficients rows, reduce the leading coefficients in the new 
coefficient row to 0. 

B Find the first non-zero coefficient in the new coefficient row 
C Check for linear independence with existing coefficient rows 
D Reduce the leading non-zero entry of the new row to 1, such that result in REF 
E Reduce the coefficient matrix to the reduced row-echelon form 

 
To enable progressive decoding, the stages of PPNC start operating when the 

destination receives a transfer unit containing coded packet and coefficient, that 
means a new row is added to matrix. On each transfer unit’s arriving, the operations 
from Stage A to Stage E operate on the coefficient and packet matrixes to form the 
reduced row-echelon form. In these stages, Stage A and E are dominant procedures. 
According to [4], Stage A has 50.05%, and Stage E has 49.5% of decoding workload. 
So the parallelization is focused on Stage A and E.  

 

Fig. 3. Concept of Thread Dividing in PPNC 



The main concept of the parallelization is to divide the coefficient matrix and 
packet matrix into a limited number of operational regions each of which is fed to 
parallel tasks (or threads). The regions are divided by vertically and equally as Fig. 3 
with PPNC. Since dependency between threads exists, at start and end of each stage, 
synchronization between threads is needed. 

3   Algorithms for Parallelization of Network Coding 

In this section, we present an arithmetic analysis on the workload balancing problem 
of the parallel progressive decoding algorithm and propose three new parallelization 
methods. In this paper, we focus on the parallelization of E stage for the purpose of 
clearer presentation. Unless otherwise specified, other stages such as Stage A are 
parallelized with the same techniques used in [4]. 

3.1   Arithmetic Analysis of Thread Balancing 

The best way to divide overall workload in parallel algorithms is to allocate same 
amount of load to each parallel task so that all the tasks such that they can start and 
end simultaneously. If the workload is unbalanced, the benefit of parallelism 
diminishes, which limits the performance of PPNC proposed in [4].  

To illustrate the problem, let us assume that the size of coefficient matrix is n×n. 
The Stage E operations start with all threads, but later, when index of decoding go to 
row of ௡

௡௨௠௕௘௥ ௢௙ ௧௛௥௘௔ௗ௦
 , the first thread has no work during coefficient matrix 

operation on Stage E. The region for that thread is already filled with 0 and 1, and no 
additional operation is needed. If there are two threads, the first thread has no 
operation after ௡

ଶ
 row’s operation. In case of 4 threads, first thread has no operation 

after ௡
ସ
 row’s operation. The more threads are added, the more inefficiency occurs. 

To compute the workload of each thread, we define a sequence of a subtraction 
after a multiplication on a spot of matrix which operates in Stage E, to a unit 
operation. With arithmetical approach, in case of 2 threads, the first thread operates  
௡యା ଺௡మା଼௡

ସ଼
 unit operations and the second thread operates ௡యା ଺௡మା଼௡

ସ଼
൅ ௡యାଶ௡మ

଼
 

operations. The gap between two threads’ numbers of operations is ௡యାଶ௡మ

଼
, and it is 

bigger than first thread’s whole operation numbers. In case of 4 threads, the gap 
between the threads is getting larger. The first thread operates ଷ௡యା଺௡మାଵ଺௡

ଵଽଶ
  unit 

operations, and the last thread operates ଷ௡యା଺௡మାଵ଺௡
ଵଽଶ

൅ ଷ௡యା଺௡మ

ଷଶ
 unit operations. The gap 

between the first and the last thread’s operation numbers is ଷ௡యା଺௡మ

ଷଶ
 in this case. 

From the analysis above, we can easily see that the workload imbalance gap of 
PPNC is proportional to n3. That is, using PPNC threads may have to wait for other 
treads possibly for a long time. We solve this workload imbalance problem and 
suggest more efficient parallel decoding algorithms in the next section.  



3.2   DOA: Dynamic Operation Assignment for Balanced Workload 

We suggest three different methods for efficient parallelization of the network coding. 
The first two methods are based on the horizontal division of matrix in order to 
balance the task separation. The easiest way of horizontal dividing is round robin (RR) 
method, which means a row is assigned to a thread, and the next row is assigned to 
the next thread, and continues as Fig. 4-(a). However, when two threads are assigned 
to any odd numbers of rows, the last row is always assigned to the first thread 
unevenly. Therefore, the first thread has the heavier workload, and unbalanced work 
distribution is made. More efficient horizontal dividing is backward round robin 
(BRR) after round robin as Fig. 4-(b). In this way, the thread of heaviest workload is 
changing, but also in case of operations on rows with odd numbers, perfect load 
balancing is not possible. Moreover, this method needs more complex arithmetic 
operations to find the row to operate than round robin and need more time for that. So 
we expect there exist some trade-offs; we will discuss this matters with the 
experimental results of two algorithms on real machines in Section 4. 

 

(a) RR - Round Robin Method       (b) BRR – Backward Round Robin Method 

Fig. 4. Concept of Horizontal Separation for Balanced Task Partitioning 

In case of round robin, the first thread, which has the maximum workload, would 
take ૛࢔૜ାૢ࢔૛ା૚૙࢔

૛૝
 unit operations on 2 threads, and ૛࢔૜ା૚ૠ࢔૛ା૜૙࢔ 

૝ૡ
 on 4 threads. On the 

other hand, last thread which has the minimum load would take ૛࢔૜ା૜࢔૛ି૛࢔
૛૝

 on 2 

threads and ૛࢔૜ି࢔૛ 
૝ૡ

 operations on 4 threads. The gaps between threads are ࢔૛ା૛࢔
૝

 with 

2 threads and ૜࢔૛ା૞࢔
ૡ

 with 4 threads. Compared to the gap calculated with PPNC, we 
can find out that round robin is much more efficient. 

The third method is to use dynamic vertical separation of operation area which is 
named DOA (Dynamic Operation Assignment). In this method, the dividing point is 
dynamically varied for each row operations as illustrated in Fig. 5. When the first row 
is to be handled as shown in the left most diagram, each thread is assigned ௡ିଵ

ଶ
 

columns, and when working on the second row and the third row shown in the next 
two diagrams, each thread works on area of ௡ିଶ

ଶ
 and ௡ିଷ

ଶ
 columns, respectively. If 



the number of columns to be assigned is not the multiples of the number of threads, 
the remaining columns are assigned unevenly. 

 

Fig. 5. Concept of Dynamic Thread Separation on Operation Area 

As the algorithms progress, the region assigned to each thread is getting narrower 
and deeper. In this way, we can easily achieve fair balancing of workloads among 
threads. Imbalanced distribution happens when the number of remaining columns is 
not a multiple of k (where k denotes the number of threads). However, that kind of 
imbalance is negligible especially when k is smaller compared to n and the DOA is an 
efficient algorithm for parallelization of Stage E. 

4   Experimental Results and Performance Analysis 

Table 2. Experimental Environment 

 Dual-Core Quad-Core 
CPU Intel Core 2 Duo E6750 AMD Phenom-X4 9550 
CPU Clock 2.66GHz 2.2GHz 
RAM 2GByte 4GByte 

Cache 
Configuration 

2x32KByte L1 cache   
4MByte Shared L2 cache 

4 x 128KByte L1 cache 
4 x 512KByte L2 cache 
2MByte Shared L3Cache 

Operating Systems Fedora Linux Core 8 Fedora Linux Core 8 
 
In this section, we evaluate the proposed three algorithms via extensive experiments 
on real multi-core machines. The specification of the machines we have used for our 
experiments is described in Table 2. 

4.1   Performance Evaluation Considering Stage E Only 

The first set of experiments is carried on in order to see the performance of Gauss-
Jordan elimination only with the coefficient matrix; which means we exclude the 
execution time spent on the packet matrix.  



 

(a)                                     (b) 

Fig. 6. Execution Time on Stage E and Speed-up (Coefficient Matrix Operation Only) 

Fig. 6-(a) shows the execution time spent only on Stage E of the coefficient matrix 
operation for four different algorithms: PPNC, RR, BRR, and DOA. Fig. 6-(b) presents 
the speed-up of RR, BRR, and DOA compared to PPNC. The size of the file used is 
1MB. From the figures, we notice that DOA shows the best performance. The speed-
up factor ranges from 2 to 2.4 compared to PPNC (again, when considering only 
Stage E of the coefficient matrix operation). We also notice that the execution time of 
round robin (RR) and backward round robin (BRR) are very similar. This is due to the 
fact that the advantages/disadvantages of two different thread assignment methods 
diminish in the real implementation.  

4.2   Speed-Up Comparison on Dual-Core Systems 

 

(a)                               (b) 

Fig. 7. Decoding Process Speed-up with Varying the Data Size  

In this part, the speed-up factor of total decoding time considering a whole file is 
measured. We have calculated the speed-up factors compared to sequential algorithms 
for various experimental scenarios. In Fig. 7, we can find out the speed-up factors of 
decoding process with four proposed algorithms on a dual-core processor. Fig. 7-(a) 
and (b) show speed-ups with n = 1024 and n = 2048 on a dual-core processor. On the 



dual-core processor, RR, BRR, and DOA do not show sharp improvement on speed-up 
while showing a better performance compared to PPNC. These results prove that our 
proposed algorithms are more efficient than PPNC. 

4.3   Total Decoding Time Comparison 

In this part, the total execution time on process is measured. In Fig. 8, we can find out 
the decoding time of the various file sizes. Fig. 8 presents the execution time in case 
with n = 1024 at (a), and n = 2048 at (b). Due to the PPNC’s unbalanced parallel 
workload distribution, the PPNC approach results in the longest decoding time 
compared to the other three algorithms in the whole decoding process. In fact, the 
operations in the remaining stages but Stage E in our algorithms are very similar to 
those operations in PPNC.  In other words, the speed up in Stage E is a dominant 
factor. 

 

(a) On Quad-Core, n = 1024          (b) On Quad-Core, n = 2048 

Fig. 8. Decoding Execution Time (in sec) with Different Data Sizes on Quad-core 

Ratio of execution time on coefficient matrix increases with larger coefficient 
matrix size, therefore DOA, RR, and BRR show better performance results on whole 
decoding process with large n. It is very important finding since the performance 
improvement in large sizes is crucial for file swarming as mentioned in Section 2.1. 
As indicated in [4], the task of coding more than 128 blocks is challenging and should 
be addressed. We claim that our approach can provide a better solution for the 
network coding with large numbers of blocks. 

4.4   Scalability Comparison  

We measure the speed-up factors and scalability using various numbers of cores to 
verify the efficiency of each algorithm. The scalability means the capability to 
accelerate the operation speed with the addition of cores. In this section, the results on 
scalability are derived with the speed-up divided by the number of cores. All the 
results are calculated considering the execution time of a sequential program on a 
single core. Fig. 9-(a) shows the speed-up factors of each algorithm with using 



various numbers of cores. We can find out the DOA shows the best performance over 
other three algorithms. Fig. 9-(b) shows the scalability calculated from the results 
shown on Fig. 9-(a).  It is also demonstrated that the DOA algorithms show the best 
scalability and these results prove the efficiency of DOA in multi-core environments.  

 

(a) Speed-Up Factors                     (b) Scalability 

Fig. 9. Speed-up Factors and Scalability of Each Algorithm (2MB Data, n=1024) 

5   Conclusion and Future Work 

This paper introduced efficient parallel algorithms for the random network coding.  
To be more specific, we proposed “balanced” parallel algorithms. We showed via 
analysis that our algorithms have less workload difference between tasks compared to 
the previously proposed PPNC algorithm. Via real machine experiments, we showed 
that our algorithms achieved speed-up of 3.05 compared to a sequential 
implementation and showed 14~30% improvement over PPNC. Moreover, our 
algorithms showed better scalability than PPNC on the number of processing units 
(e.g., processor cores). We expect that our work can be applied to further enhance the 
performance of various network coding applications such as peer-to-peer file sharing 
systems.  
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